organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Bromo-5-methoxy-N'-[(E)-(4-nitrophenyl)methylene]benzohydrazide

B. Narayana,^a B. P. Siddaraju,^b C. R. Raju,^c H. S. Yathirajan^d and Michael Bolte^e*

^aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^bDepartment of Chemistry, V. V. Puram College of Science, Bangalore 560 004, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^eInstitut für Anorganische Chemie, I. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 10 July 2007; accepted 12 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.103; data-to-parameter ratio = 13.2.

The geometric parameters of the title molecule, C₁₅H₁₂BrN₃O₄, are in the usual ranges. The dihedral angle between the two benzene rings is $49.69 (10)^{\circ}$. In the crystal structure, molecules are connected by intermolecular N-H···O hydrogen bonds to form a one-dimensional chain in the c-axis direction.

Related literature

For related structures, see: Shan et al. (2004); Ali et al. (2004); Yathirajan et al. (2006). For related literature, see: Varma et al. (1986); Misra et al. (1981); Agarwal et al. (1983); Singh & Dash (1988); Hodnett & Dunn (1970).

a = 7.2604 (8) Å

b = 21.8931 (19) Å

c = 9.5795 (12) Å

Experimental

Crystal data C15H12BrN3O4 $M_r = 378.19$ Monoclinic, $P2_1/c$

$\beta = 97.882 \ (9)^{\circ}$
V = 1508.3 (3) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection ____

Stoe IPDS II two-circle	9259 measured reflections
diffractometer	2818 independent reflections
Absorption correction: multi-scan	2368 reflections with $I > 2\sigma(I)$
(MULABS; Spek, 2003;	$R_{\rm int} = 0.060$
Blessing, 1995)	
$T_{\min} = 0.414, \ T_{\max} = 0.436$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture o
$wR(F^2) = 0.103$	independent and constrained
S = 1.02	refinement
2818 reflections	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
214 parameters	$\Delta \rho_{\rm min} = -1.01 \text{ e } \text{\AA}^{-3}$

 $\mu = 2.75 \text{ mm}^{-1}$ T = 173 (2) K

of

 $0.33 \times 0.32 \times 0.30$ mm

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1^i$	0.85 (4)	2.05 (4)	2.889 (4)	171 (3)
Symmetry code: (i)	$x, -y + \frac{1}{2}, z - \frac{1}{2}.$			

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

BN thanks the Department of Studies in Chemistry, Mangalore University, for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2458).

References

Agarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. Sect. B, 22 308-310

Ali, H., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, o1873-o1874. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.
- Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209-213.
- Shan, S., Wang, X.-J., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1345-01347.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345-349.
- Yathirajan, H. S., Vijaya Raj, K. K., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5013-o5014.

supplementary materials

Acta Cryst. (2007). E63, o3522 [doi:10.1107/S1600536807034150]

2-Bromo-5-methoxy-N'-[(E)-(4-nitrophenyl)methylene]benzohydrazide

B. Narayana, B. P. Siddaraju, C. R. Raju, H. S. Yathirajan and M. Bolte

Comment

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds *via* ring closure, cycloaddition and replacement reactions. Some Schiff base derivatives were reported to possess antimicrobial, antiinflammatory and central nervous system activities and moreover, Schiff bases are also known to have biological activities such as antimicrobial, antifungal, antitumor, and as herbicides (Varma *et al.*, 1986; Misra *et al.*, 1981; Agarwal *et al.*, 1983; Singh *et al.*, 1988; Hodnett *et al.*, 1970). The title compound has been synthesized and its crystal structure is reported herein.

The geometric parameters of the title molecule, $C_{15}H_{12}BrN_3O_4$, are in the usual ranges. The dihedral angle between the two benzene rings is 49.69 (10)°. In the crystal structure, molecules are connected by intermolecular N—H···O hydrogen bonds to form one-dimensional chain in the *c* axis direction.

Similar structures related to the title compound that have already been reported are 2-chloro-3,4-dimethoxybenzaldehyde (4-nitrophenyl)hydrazone (Shan *et al.*, 2004), 1-(4-fluoro-2-hydroxyphenyl)ethanone 4-nitrobenzoylhydrazone (Ali *et al.*, 2004) and 3-(2-bromo-5-methoxyphenyl)-5-methyl-1-(4-phenyl-1,3-thiazol-2-yl)- 1*H*-1,2,4-triazole (Yathirajan *et al.*, 2006).

Experimental

A mixture of 2-bromo-5-methoxybenzohydrazide (0.735 g, 0.003 mol) and 4-nitrobenzaldehyde (0.453 g, 0.003 mol) in 15 ml of absolute alcohol containing 2 drops of dilute sulfuric acid was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystallized from ethyl acetate (m.p.: 462–464 K). Analysis for $C_{15}H_{12}BrN_3O_4$: Found (Calculated): C: 47.55 (47.64); H: 3.16 (3.20); N:11.06% (11.11%).

Refinement

H atoms were found in a difference map, but those bonded to C were refined using a riding model with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ [C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group, which was allowed to rotate but not to tip]. The H atom bonded to N was freely refined.

Figures

Fig. 1. The molecular structure with the atom numbering; displacement ellipsoids are at the 50% probability level.

Fig. 2. The reaction scheme

2-Bromo-5-methoxy-N'-[(E)-(4-nitrophenyl)methylene]benzohydrazide

Crystal data	
C ₁₅ H ₁₂ BrN ₃ O ₄	$F_{000} = 760$
$M_r = 378.19$	$D_{\rm x} = 1.665 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9399 reflections
a = 7.2604 (8) Å	$\theta = 3.6 - 25.7^{\circ}$
<i>b</i> = 21.8931 (19) Å	$\mu = 2.75 \text{ mm}^{-1}$
<i>c</i> = 9.5795 (12) Å	T = 173 (2) K
$\beta = 97.882 \ (9)^{\circ}$	Block, light yellow
$V = 1508.3 (3) \text{ Å}^3$	$0.33\times0.32\times0.30~mm$
Z = 4	

Data collection

Stoe IPDS II two-circle diffractometer	2818 independent reflections
Radiation source: fine-focus sealed tube	2368 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
T = 173(2) K	$\theta_{\text{max}} = 25.7^{\circ}$
ω scans	$\theta_{\min} = 3.5^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -8 \rightarrow 8$
$T_{\min} = 0.414, \ T_{\max} = 0.436$	$k = -24 \rightarrow 26$
9259 measured reflections	$l = -11 \rightarrow 9$

Refinement

Refinement on F^2	Refir	nement	on	F^2
---------------------	-------	--------	----	-------

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.042$

 $wR(F^2) = 0.103$

S = 1.02

2818 reflections

214 parameters

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0687P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.79 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.01 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}

Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.0053 (10)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.32579 (4)	0.100500 (15)	0.57802 (4)	0.02733 (15)
01	0.5025 (3)	0.22410 (11)	0.7115 (2)	0.0269 (5)
02	1.0036 (3)	0.15890 (12)	0.3018 (3)	0.0331 (6)
O3	0.1301 (4)	0.64942 (13)	0.5891 (4)	0.0529 (8)
O4	0.0367 (4)	0.60609 (13)	0.7701 (3)	0.0408 (7)
N1	0.4881 (3)	0.28121 (12)	0.5111 (3)	0.0196 (5)
H1	0.502 (4)	0.2827 (16)	0.425 (4)	0.017 (8)*
N2	0.4182 (3)	0.33185 (12)	0.5697 (3)	0.0204 (5)
N3	0.1128 (4)	0.60476 (13)	0.6635 (3)	0.0293 (7)
C1	0.5290 (4)	0.22977 (14)	0.5886 (3)	0.0184 (6)
C2	0.3788 (4)	0.37684 (15)	0.4844 (3)	0.0219 (6)
H2	0.3959	0.3726	0.3883	0.026*
C11	0.6152 (4)	0.18073 (14)	0.5101 (3)	0.0186 (6)
C12	0.5502 (4)	0.12071 (15)	0.5056 (3)	0.0208 (6)
C13	0.6396 (4)	0.07531 (16)	0.4399 (4)	0.0251 (7)
H13	0.5944	0.0346	0.4383	0.030*
C14	0.7945 (5)	0.08914 (16)	0.3766 (4)	0.0261 (7)
H14	0.8587	0.0576	0.3350	0.031*
C15	0.8564 (4)	0.14933 (16)	0.3737 (3)	0.0232 (7)
C16	0.7690 (4)	0.19505 (15)	0.4417 (3)	0.0205 (6)
H16	0.8133	0.2359	0.4418	0.025*
C17	1.0707 (5)	0.22025 (19)	0.2950 (5)	0.0428 (10)
H17A	0.9718	0.2463	0.2471	0.064*
H17B	1.1775	0.2208	0.2426	0.064*
H17C	1.1089	0.2356	0.3907	0.064*
C21	0.3078 (4)	0.43461 (14)	0.5336 (3)	0.0197 (6)
C22	0.2838 (4)	0.48389 (15)	0.4405 (3)	0.0216 (6)
H22	0.3100	0.4789	0.3467	0.026*
C23	0.2223 (4)	0.54005 (15)	0.4830 (4)	0.0230 (7)
H23	0.2067	0.5736	0.4197	0.028*
C24	0.1842 (4)	0.54577 (14)	0.6200 (4)	0.0221 (7)
C25	0.2056 (4)	0.49770 (15)	0.7154 (3)	0.0234 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H25	0.1775	0.5028	0.8087	0.028*
C26	0.2688 (4)	0.44214 (15)	0.6716 (3)	0.0221 (7)
H26	0.2858	0.4089	0.7358	0.026*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0317 (2)	0.0242 (2)	0.0281 (2)	-0.00598 (13)	0.01127 (13)	0.00084 (14)
01	0.0430 (12)	0.0234 (12)	0.0163 (12)	0.0023 (10)	0.0114 (9)	0.0011 (9)
02	0.0347 (12)	0.0298 (14)	0.0395 (14)	0.0040 (10)	0.0224 (10)	-0.0036 (11)
03	0.077 (2)	0.0188 (14)	0.068 (2)	0.0059 (13)	0.0277 (17)	-0.0039 (15)
O4	0.0419 (14)	0.0404 (17)	0.0426 (16)	0.0102 (11)	0.0143 (12)	-0.0153 (13)
N1	0.0288 (12)	0.0176 (13)	0.0143 (13)	0.0045 (10)	0.0094 (10)	0.0007 (11)
N2	0.0234 (12)	0.0165 (13)	0.0224 (14)	0.0013 (10)	0.0075 (10)	-0.0029 (11)
N3	0.0263 (13)	0.0224 (16)	0.0389 (18)	0.0001 (11)	0.0031 (12)	-0.0104 (14)
C1	0.0185 (12)	0.0187 (16)	0.0184 (16)	-0.0015 (11)	0.0041 (11)	0.0015 (13)
C2	0.0221 (13)	0.0228 (17)	0.0215 (16)	0.0008 (12)	0.0058 (12)	0.0021 (13)
C11	0.0231 (13)	0.0178 (16)	0.0150 (14)	0.0038 (11)	0.0033 (11)	0.0017 (12)
C12	0.0243 (14)	0.0195 (16)	0.0187 (15)	0.0003 (12)	0.0032 (12)	0.0017 (13)
C13	0.0329 (15)	0.0158 (16)	0.0265 (18)	0.0025 (13)	0.0039 (13)	0.0013 (14)
C14	0.0320 (16)	0.0218 (17)	0.0253 (17)	0.0088 (12)	0.0065 (13)	-0.0055 (14)
C15	0.0233 (14)	0.0283 (18)	0.0186 (15)	0.0050 (12)	0.0048 (11)	0.0002 (13)
C16	0.0217 (13)	0.0180 (15)	0.0221 (16)	0.0016 (11)	0.0036 (11)	-0.0004 (13)
C17	0.0408 (19)	0.037 (2)	0.058 (3)	-0.0026 (16)	0.0311 (18)	-0.001 (2)
C21	0.0154 (12)	0.0183 (15)	0.0252 (16)	-0.0023 (11)	0.0020 (11)	-0.0018 (13)
C22	0.0254 (14)	0.0222 (17)	0.0184 (15)	0.0016 (12)	0.0069 (11)	-0.0004 (13)
C23	0.0226 (13)	0.0180 (16)	0.0280 (17)	-0.0002 (11)	0.0026 (12)	0.0016 (14)
C24	0.0171 (12)	0.0193 (16)	0.0298 (17)	-0.0011 (11)	0.0026 (12)	-0.0079 (14)
C25	0.0210 (13)	0.0267 (17)	0.0237 (17)	-0.0014 (12)	0.0073 (12)	-0.0025 (14)
C26	0.0198 (13)	0.0241 (17)	0.0225 (16)	-0.0015 (11)	0.0037 (11)	0.0013 (13)

Geometric parameters (Å, °)

1.908 (3)	С13—Н13	0.9500
1.225 (4)	C14—C15	1.394 (5)
1.364 (4)	C14—H14	0.9500
1.434 (5)	C15—C16	1.394 (4)
1.226 (4)	С16—Н16	0.9500
1.227 (4)	С17—Н17А	0.9800
1.359 (4)	С17—Н17В	0.9800
1.371 (4)	С17—Н17С	0.9800
0.85 (4)	C21—C22	1.395 (4)
1.287 (4)	C21—C26	1.400 (5)
1.473 (4)	C22—C23	1.388 (5)
1.497 (4)	C22—H22	0.9500
1.468 (5)	C23—C24	1.384 (5)
0.9500	C23—H23	0.9500
1.395 (4)	C24—C25	1.389 (5)
1.405 (4)	C25—C26	1.385 (5)
	1.908 (3) $1.225 (4)$ $1.364 (4)$ $1.434 (5)$ $1.226 (4)$ $1.227 (4)$ $1.359 (4)$ $1.371 (4)$ $0.85 (4)$ $1.287 (4)$ $1.473 (4)$ $1.497 (4)$ $1.468 (5)$ 0.9500 $1.395 (4)$ $1.405 (4)$	1.908(3) $C13$ —H13 $1.225(4)$ $C14$ —C15 $1.364(4)$ $C14$ —H14 $1.434(5)$ $C15$ —C16 $1.226(4)$ $C16$ —H16 $1.227(4)$ $C17$ —H17A $1.359(4)$ $C17$ —H17B $1.371(4)$ $C17$ —H17C $0.85(4)$ $C21$ —C22 $1.287(4)$ $C21$ —C26 $1.473(4)$ $C22$ —C23 $1.497(4)$ $C22$ —H22 $1.468(5)$ $C23$ —C24 0.9500 $C23$ —H23 $1.395(4)$ $C25$ —C26

C12—C13	1.385 (5)	C25—H25	0.9500
C13—C14	1.382 (5)	C26—H26	0.9500
C15—O2—C17	117.5 (3)	C14—C15—C16	120.0 (3)
C1—N1—N2	120.8 (3)	C15-C16-C11	120.0 (3)
C1—N1—H1	121 (2)	C15-C16-H16	120.0
N2—N1—H1	118 (2)	C11—C16—H16	120.0
C2—N2—N1	114.9 (3)	O2—C17—H17A	109.5
O3—N3—O4	124.0 (3)	O2—C17—H17B	109.5
O3—N3—C24	117.8 (3)	H17A—C17—H17B	109.5
O4—N3—C24	118.2 (3)	O2—C17—H17C	109.5
O1-C1-N1	123.9 (3)	H17A—C17—H17C	109.5
01—C1—C11	122.8 (3)	H17B—C17—H17C	109.5
N1-C1-C11	113.3 (3)	C22—C21—C26	119.3 (3)
N2—C2—C21	120.9 (3)	C22—C21—C2	118.7 (3)
N2—C2—H2	119.6	C26—C21—C2	122.0 (3)
C21—C2—H2	119.6	C23—C22—C21	121.0 (3)
C12—C11—C16	118.9 (3)	С23—С22—Н22	119.5
C12—C11—C1	121.9 (3)	C21—C22—H22	119.5
C16—C11—C1	119.2 (3)	C24—C23—C22	118.2 (3)
C13—C12—C11	120.8 (3)	C24—C23—H23	120.9
C13—C12—Br1	118.4 (2)	С22—С23—Н23	120.9
C11—C12—Br1	120.6 (2)	C23—C24—C25	122.5 (3)
C14—C13—C12	120.2 (3)	C23—C24—N3	118.1 (3)
C14—C13—H13	119.9	C25—C24—N3	119.4 (3)
С12—С13—Н13	119.9	C26—C25—C24	118.5 (3)
C13—C14—C15	120.0 (3)	С26—С25—Н25	120.7
C13-C14-H14	120.0	С24—С25—Н25	120.7
C15-C14-H14	120.0	C25—C26—C21	120.5 (3)
O2-C15-C14	115.6 (3)	С25—С26—Н26	119.7
O2—C15—C16	124.3 (3)	C21—C26—H26	119.7
C1—N1—N2—C2	-177.6 (3)	C14—C15—C16—C11	-1.6 (4)
N2—N1—C1—O1	2.2 (4)	C12-C11-C16-C15	-1.5 (4)
N2—N1—C1—C11	-176.2 (2)	C1-C11-C16-C15	177.0 (3)
N1—N2—C2—C21	-178.3 (2)	N2—C2—C21—C22	174.0 (3)
O1-C1-C11-C12	51.0 (4)	N2-C2-C21-C26	-4.1 (4)
N1-C1-C11-C12	-130.5 (3)	C26—C21—C22—C23	0.1 (4)
O1—C1—C11—C16	-127.4 (3)	C2—C21—C22—C23	-178.1 (3)
N1-C1-C11-C16	51.0 (3)	C21—C22—C23—C24	-0.4 (4)
C16-C11-C12-C13	2.6 (4)	C22—C23—C24—C25	0.1 (4)
C1—C11—C12—C13	-175.8 (3)	C22—C23—C24—N3	-177.9 (3)
C16-C11-C12-Br1	-172.9 (2)	O3—N3—C24—C23	-16.3 (4)
C1—C11—C12—Br1	8.6 (4)	O4—N3—C24—C23	162.5 (3)
C11—C12—C13—C14	-0.6 (5)	O3—N3—C24—C25	165.6 (3)
Br1-C12-C13-C14	175.1 (2)	O4—N3—C24—C25	-15.7 (4)
C12—C13—C14—C15	-2.6 (5)	C23—C24—C25—C26	0.5 (4)
C17—O2—C15—C14	179.4 (3)	N3—C24—C25—C26	178.5 (2)
C17—O2—C15—C16	-0.6 (5)	C24—C25—C26—C21	-0.8 (4)
C13—C14—C15—O2	-176.3 (3)	C22—C21—C26—C25	0.5 (4)

supplementary materials

C13—C14—C15—C16 O2—C15—C16—C11	3.7 (5) 178.4 (3)	C2—C	C21—C26—C25		178.7 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A	D	H	H···A	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.85	(4)	2.05 (4)	2.889 (4)	171 (3)
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$.					

Fig. 1

